Your PRINTED name is 1.

Your Recitation Instructor (and time) is \qquad 2.

Instructors: (Hezari)(Pires)(Sheridan)(Yoo)
3.
4.
5.
6.
7.
8.
9.

Please show enough work so we can see your method and give due credit.

1. (a) For this matrix A, find the usual P (permutation) and L and U so that $P A=L U$.

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 1 \\
2 & 2 & 4 & 2 \\
3 & 4 & 7 & 3
\end{array}\right]
$$

(b) Find a basis for the nullspace of A.
(c) The vector $\left(b_{1}, b_{2}, b_{3}\right)$ is in the column space of A provided it is orthogonal to (give a numerical answer).
2. (a) Compute the 4 by 4 matrix P that projects every vector in R^{4} onto the column space of A :

$$
A=\left[\begin{array}{rr}
1 & -1 \\
1 & 1 \\
1 & 1 \\
1 & -1
\end{array}\right]
$$

(b) What are the four eigenvalues of P ? Explain your reasoning.
(c) Find a unit vector u (length 1) that is as far away as possible from the column space of A.
3. Suppose A is an m by n matrix and its pivot columns (not free columns) are $c_{1}, c_{2}, \ldots, c_{r}$. Put these columns into a matrix C.
(a) Every column of A is a \qquad of the columns of C. How would you produce from this a matrix R so that $A=C R$? Explain how to construct R.
(b) Using C from part (a) factor the following matrix A into $C R$, where C has independent columns and R has independent rows.

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 5
\end{array}\right]
$$

4. (a) Find the cofactor matrix C for this matrix A. (The i, j entry of C is the cofactor including \pm sign of the i, j position in A.)

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right]
$$

(b) If a square matrix B is invertible, how do you know that its cofactor matrix is invertible?
(c) True or false with a reason, if B is invertible with cofactor matrix C :

$$
\text { determinant of } \quad B^{-1}=\frac{\text { determinant of } C}{\text { determinant of } B}
$$

5. (a) Find the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and a full set of independent eigenvectors x_{1}, x_{2}, x_{3} (if possible) for

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(b) Suppose $u_{0}=3 x_{1}+7 x_{2}+5 x_{3}$ is a combination of your eigenvectors of A :

Find $A^{k} u_{0}$. If $\|v\|$ is the length of v, find the limit of $\frac{\left\|A^{k+1} u_{0}\right\|}{\left\|A^{k} u_{0}\right\|}$ as $k \rightarrow \infty$.
6. (a) For this directed graph, write down the 5 by 4 incidence matrix A. Describe the nullspace of A.

(b) Find the matrix $G=A^{T} A$. Is this matrix G positive definite? (Explain why or why not.) The first entry is $G_{11}=3$ because the graph has \qquad .
(c) What is the sum of the squares of the singular values of A ? Hint: Remember that those numbers σ^{2} are \qquad .
7. Suppose A is a positive definite symmetric matrix with n different eigenvalues: $A x_{i}=\lambda_{i} x_{i}$. (a) What are the properties of those λ 's and x 's? How would you find an orthogonal matrix Q so that $A=Q \Lambda Q^{T}$ with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$?
(b) I am looking for a symmetric positive definite matrix B with $B^{2}=A$ (a square root of A). What will be the eigenvectors and eigenvalues of B ? Can you find a formula for B using Q and Λ from part (a)?
(c) What are the eigenvalues and eigenvectors of the matrix e^{-A} ? Is this matrix also positive definite and why?
8. Suppose the 2 by 3 matrix A has $A v_{1}=3 u_{1}$ and $A v_{2}=5 u_{2}$ with orthonormal v_{1}, v_{2} in R^{3} and orthonormal u_{1}, u_{2} in R^{2}.
(a) Describe the nullspace of A.
(b) Find the eigenvalues of $A^{T} A$.
(c) Find the eigenvalues and eigenvectors of $A A^{T}$.
9. (a) The index of a matrix A is the dimension of its nullspace minus the dimension of the nullspace of A^{T}. If A is a 9 by 7 matrix of rank r, what is its index?
(b) Suppose M is the vector space consisting of all 2 by 2 matrices. (So those matrices are the "vectors" in M.) Write down a basis for this vector space M : linearly independent and spanning the space M.
(c) $S=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ is a specific matrix in M. For every 2 by 2 matrix A, the transformation T produces $T(A)=S^{-1} A S$. Is this a linear transformation? What tests do you have to check?

